Translate

Selasa, Juni 12, 2012

Eksplorasi seismik


Gelombang seismik adalah rambatan energi yang disebabkan karena adanya gangguan di dalam kerak bumi, misalnya adanya patahan atau adanya ledakan. Energi ini akan merambat ke seluruh bagian bumi dan dapat terekam oleh seismometer.
Efek yang ditimbulkan oleh adanya gelombang seismik dari gangguan alami (seperti: pergerakan lempeng (tektonik), bergeraknya patahan, aktivitas gunung api (vulkanik), dsb) adalah apa yang kita kenal sebagai fenomena gempa bumi.
Eksplorasi seismik adalah istilah yang dipakai di dalam bidang geofisika untuk menerangkan aktivitas pencarian sumber daya alam dan mineral yang ada di bawah permukaan bumi dengan bantuan gelombang seismik, sumber gelombang di eksplorasi seismik ini berasal dari explosive yang ditanamkan di dalam sebuah lobang atau dari alat vibarator (alat getar). Hasil rekaman yang diperoleh dari survei ini disebut dengan penampang seismik.
Eksplorasi seismik atau eksplorasi dengan menggunakan metode seismik banyak dipakai oleh perusahaan-perusahaan minyak untuk melakukan pemetaan struktur di bawah permukaan bumi untuk bisa melihat kemungkinan adanya jebakan-jebakan minyak berdasarkan interpretasi dari penampang seismiknya.
Di dalam eksplorasi seismik dikenal 2 macam metode, yaitu:
  1. Metode seismik pantul/refleksi
  2. Metode seismik bias/refraksi
Dalam beberapa tahun ini, eksplorasi seismik di Indonesia sangat gencar, dikarenaka ketersedian bahan bakar minyak yang dibutuhkan tidak sesuai dengan hasil produksi minyak kita saat ini. 

Seismik Refraksi

Seismik Refleksi

Skema Akusisi Data Seismik

Gelombang Seismik

Senin, Juni 11, 2012

CEKUNGAN KALIMANTAN TIMUR UTARA




GEOLOGI REGIONAL CEKUNGAN KALIMANTAN TIMUR UTARA
Cekungan Kalimantan Timur Utara yang dikenal juga dengan Cekungan Tarakan (IBS, 2006) merupakan salah satu cekungan penghasil hidrokarbon di Kalimantan Timur bagian utara. Cekungan Tarakan dapat dibagi menjadi 4 sub-cekungan yaitu: Sub-cekungan Tidung, Sub-cekungan Berau, Sub-cekungan Tarakan, dan Sub-cekungan Muara (Biantoro dkk., 1996; IBS, 2006). Batas-batas dari empat sub-cekungan tersebut adalah zona-zona sesar dan tinggian. Bagian utara dari Cekungan Kalimantan Timur Utara dibatasi oleh Tinggian Samporna yang terletak sedikit ke utara dari perbatasan wilayah Indonesia dan Malaysia. Bagian barat ke arah Kalimantan dibatasi oleh Punggungan Sekatak-Berau. Sedangkan di bagian selatan, terdapat Punggungan Mangkalihat yang memisahkan Cekungan Tarakan dengan Cekungan Kutai. Batas timur dan tenggara dari cekungan ini berupa laut lepas Selat Makasar.

TEKTONIK REGIONAL CEKUNGAN TARAKAN
Perkembangan struktur-struktur di Sub-cekungan Tarakan, Cekungan Tarakan berlangsung dalam beberapa tahapan yang mempengaruhi pengendapan sedimen pada area tersebut. Konfigurasi secara struktural sudah dimulai oleh rifting sejak Eosen Awal. Pemekaran (rifting) pada sub-cekungan ini disebabkan oleh pembentukan sesar-sesar normal. Pergerakan dari sesar-sesar tersebut menghasilkan daerah-daerah rendahan yang kemudian terisi oleh sedimen-sedimen tertua pada sub-cekungan ini, seperti Formasi Sembakung (akhir Miosen Awal-Miosen Tengah). Sedimen-sedimen pra-Tersier tidak terpenetrasi pada banyak sumur yang dibor pada sub-cekungan ini, namun keberadaannya terdeteksi pada data seismik (Biantoro dkk., 1996).
Proses Rifting berjalan dengan terus menerus disertai dengan adanya pengangkatan secara lokal di bagian barat dari sub-cekungan mengontrol siklus-siklus pengendapan sedimen pada sub-cekungan ini. Pengendapan pada sub-cekungan ini dapat dibagi menjadi 4 siklus berhubungan dengan beberapa kejadian tektonik pada regional. Pengendapan sedimen-sedimen siklus yang pertama (Siklus 1) terjadi pada saat terjadinya pengangkatan pada Eosen Tengah yang menyebabkan erosi di Tinggian/Punggungan Sekatang.
Pengendapan siklus yang kedua (Siklus 2) dimulai sejak pengangkatan Oligosen Awal pada fasa transgresif, dengan sedimen yang diendapkan secara tidakselarasan terhadap Siklus 1.  Fasa ini berubah menjadi regresif ketika proses rifting berakhir dan pengangkatan mencapai puncaknya pada akhir dair Miosen Akhir. Pengangkatan yang kedua ini berbeda dengan proses pengangkatan pertama karena berkembang ke arah timur dan menghasilkan Punggungan Dasin-Fanny. Proses rifting yang kedua ini menghasilkan sesar-sesar normal yang memiliki arah timurlaut-baratdaya.
Gambar 1. Peta lokasi Sub-Cekungan Tarakan (Biantoro dkk., 1996)

Gambar 2. Tektonik Sub-Cekungan Tarakan (Modifikasi dari Biantoro dkk., 1996). Proses-proses rifting, pengangkatan, dan reaktivasi sesar-sesar tua mempengaruhi perkembangan struktur dan siklus pengendapan di Sub-Cekungan Tarakan.



Pengendapan Siklus 3 yang regresif berlangsung pada lingkungan transisional-deltaik. Sedimen-sedimen yang diendapkan dalam jumlah yang besar menyebabkan rekativasi dari sesar-sesar tua yang terbentuk selama Oligosen sampai Miosen Awal yang berkembang menjadi growth fault. Petumbuhan dari sesar-sesar tersebut berhenti untuk sementara waktu pada awal pengendapan dari Formasi Santul dikarenakan oleh terjadinya fasa trangresif yang pendek. Pensesaran tersebut berlangsung selama Pliosen ketika siklus pengedapan keempat (Siklus 4), yaitu Formasi Tarakan diendapkan.
Aktivitas Tektonik pada Pliosen Akhir-Pleistosen bersifat kompresif dan menghasilkan sesar-sesar strike-slip. Di beberapa tempat, kompresi ini menginversikan sesar-sesar normal menjadi sesar-sesar naik (Biantoro dkk., 1996). Kegiatan tekonik yang menyebabkan pengangkatan, perlipatan, dan pensesaran keseluruhan Cekungan Tarakan pada Pliosen Akhir kemudian menyebabkan munculnya ketidakselarasan di beberapa daerah secara lokal. Pada Siklus 5 yang merupakan siklus pengendapan terakhir pada sub-cekungan ini, diendapakan Formasi Bunyu.
STRATIGRAFI REGIONAL CEKUNGAN TARAKAN
Batuan dasar pada cekungan Kalimantan Timur Utara terdiri dari sedimen-sedimen berumur  tua, meliputi Formasi Danau (Heriyanto dkk., 1991) atau disebut juga Formasi Damiu (IBS, 2006), Formasi Sembakung, dan Batulempung Malio. Sedimen-sedimen tersebut telah terkompaksi, terlipatkan, dan tersesarkan.
Formasi Danau
Formasi Danau terdeformasi kuat dan sebagian termetamorfosa, mengandung breksi terserpentinitisasi, rijang radiolaria, spilit, serpih,slate, dan kuarsa.
Formasi Sembakung dan Batulempung Malio
Gambar 3.  Kolom Stratigrafi Cekungan Kalimantan Timur Utara (kiri: dimodifikasi dari Heriyanto dkk., 1991; kanan: IBS, 2006)
Formasi Sembakung diendapkan di atas Formasi Danau secara tidak selaras. Formasi ini terdiri dari sedimen volkanik dan klastik yang berumur Eosen Awal-Eosen Tengah. Di atas Formasi Sembakung diendapkan batulempung berfosil, karbonatan, dan mikaan yang dikenal dengan Batulempung Malio yang berumur Eosen Tengah.
Siklus 1: Formasi Sujau, Mangkabua, dan Selor (Eosen Akhir – Oligosen)
Sedimen-sedimen pada Siklus 1 diendapkan secara tidak selaras terhadap Formasi Sembakung dan memiliki lingkungan pengendapan dari laut littoral sampai dangkal. Formasi Sujau terdiri dari sedimen klastik (konglomerat dan batupasir), serpih, dan volkanik. Klastika Formasi Sujau merepresentasikan tahap pertama pengisian cekungan “graben-like” yang mungkin terbentuk sebagai akibat dari pemakaran Makassar pada Eosen Awal. Produk erosional dari Paparan Sunda di sebelah barat terakumulasi bersamaan dengan endapan gunungapi dan pirokasltik pada bagian bawah siklus ini. Keberadaan lapisan-lapisan batubara dan interkalasi napal pada bagian bawah mengindikasikan fasies pengendapan danau yang bergradasi ke atas menjadi lingkungan laut. Batugamping mikritik dari Formasi Seilor diendapkan secara tidak selaras di atas Formasi Sujau dan Formasi Mangkabua yang terdiri dari serpih laut dan napal yang berumur Oligosen menjadi penciri perubahan suksesi ke basinward. Batuan sedimen siklus 1 terangkat, sebagian tersingkap dan tererosi sebagian di tepi barat dari cekungan berkaitan dengan aktivitas volkanisme yang terjadi sepanjang tepian deposenter pada akhir Oligosen.
Siklus 2: Formasi Tempilan, Formasi Taballar, Napal Mesalai, Formasi Naintupo (Oligosen Akhir – Miosen Tengah).
Sedimen-sedimen yang diendapkan di atas sedimen sebelumnya secara tidak selaras. Sedimen-sedimen tersebut merupakan sikuen-sikuen transgersif dan tidak terlalu terdeformasi. Fasies klastik basal dari Formasi Tempilan diendapkan pertama kali pada siklus ini dan diikuti oleh batugamping mikritik dari Formasi Taballar. Formasi Taballar merupakan sikuen paparan karbonat dengan perkembangan reef lokal Oligosen Akhir sampai Miosen Awal. Formasi ini secara gradual menipis ke arah cekungan terhadap napal Mesalai yang kemudian berubah menjadi Formasi Naintupo di atasnya. Formasi Naintupo terdiri dari lempung dan serpih yang bergradasi ke atas menjadi napal dan batugamping yang menandakan meluasnya genang laut di cekungan Tarakan.
Siklus 3: Formasi Meliat, Formasi Tabul, dan Formasi Santul (Miosen Tengah – Miosen Akhir).
Sedimen-sedimen dari siklus 3 ini terdiri dari sikuen-sikuen deltaik regresif yang terbentuk setelah tektonisma Miosen Awal (Orogenesa Intra-Miosen). Siklus sedimentasi ini terbagi menjadi 3 formasi, yaitu: Formasi Meliat, Tabul, dan Santul. Perbedaan sikuen deltaik antara formasi-formasi tersebut sulit untuk diuji dan dibedakan mengingat sedikitnya fosil-fosil yang dapat ditemukan dan kesamaan litologi antar formasi-formasi tersebut. Pengangkatan yang terjadi menyebabkan berhentinya fasa genang laut dan perubahan lingkungan pengendapan yang semula bersifat laut terbuka menjadi lebih paralik. Perubahan ini mengawali pola pengendapan baru di Cekungan Tarakan yang membentuk delta-delta konstruktif dengan progradasi dari barat ke timur.
Formasi Meliat merupakan nama formasi tertua dari siklus 3 dan diendapkan secara tidak selaras dengan Serpih Naintupo. Formasi ini terdiri dari batupasir kasar, serpih karbonatan, dan batugamping tipis. Di beberapa bagian, Formasi Meliat terdiri dari batulanau dan serpih dengan sedikit lensa-lensa batupasir. Formasi Tabul terdiri dari batupasir, batulanau, dan serpih yang kadang disertai dengan kemunculan lapisan batubara dan batugamping. Bagian paling atas dari siklus ini adalah Formasi Santul. Pada formasi ini sering dijumpai lapisan batubara tipis yang berinterkalasi dengan batupasir, batulanau, dan batulempung, yang diendapkan di lingkungan delta plain sampai delta front pada Miosen Akhir.
Siklus 4: Formasi Tarakan (Pliosen)
Pada siklus sedimentasi Pliosen, diendapkan Formasi Tarakan. Formasi ini terdiri dari interbeding batulempung, serpih, batupasir, dan lapisan-lapisan batubata lignit, yang menunjukan fasies pengendapan delta plain. Dasar dari Formasi Tarakan pada beberapa ditepresentasikan oleh ketidakselarasan, sedangkan di Pulau Bunyu, kontak antara Formasi Santul dengan Tarakan bersifat transisional.
Siklus 5: Formasi Bunyu (Plistosen)
Sejak Pliosen, sedimen fluviomarine yang sangat tebal terbentuk, terutama terdiri dari perlapisan batupasir delta, serpih, dan batubara. Sedimen Kuarter dari siklus 5 dinamakan Formasi Bunyu, diendapkan di lingkungan delta plain sampai fluviatil. Batupasir tebal, berukuran butir medium sampai kasar, kadangkala konglomeratan dan interbeding batubara lignit dengan serpih merupakan litologi penyusun dari formasi Bunyu. Batupasir formasi ini lebih tebal, kasar, dan kurang terkonsilidasi jika dibandingkan dengan batupasir Formasi Tarakan. Batas bawah dari Formasi ini dapat bersifat tidak selaras maupun transisional. Meningginya muka laut pada kala Pleistosen Akhir menyebabkan garis pantai mundur ke arah barat seperti garis pantai saat ini.
Daftar Pustaka
Biantoro, E.,  M.I. Kusuma, dan L.F. Rotinsulu. 1996.Tarakan Sub-basin Growth Fault, North-East Kalimantan: Their Roles in Hydrocarbon Entrapments. Proceedings Indonesian Petroleum Association, 21st Silver Anniversary Convention, 175-189.
Heriyanto, N., W. Satoto, S. Sardjono. 1992. An Overview of Hydrocarbon Maturity and Its Migration Aspects in Bunyu Island, Tarakan Basin.Proceedings Indonesian Petroleum Association,  21st Annual Convention, vol. 1, hal. 1-22.
Heriyanto, N., W. Satoto, dan S. Sardjono. 1991. Pematangan Hidrokarbon dan Hipotesa Migrasi Di Pulau Bunyu Cekungan Tarakan. Makalah Ikatan Ahli Geologi Indonesia (IAGI),  Pertemuan Ilmiah Tahunan Ke-20, hal.  261-280.
Patra Nusa Data. 2006. Indonesia Basin Summaries (IBS).